SBIDZ Teacher Professional Development Course

Module 2: Teaching geometry with technology

Make sure you work on a high level of interpretation and analysis. The questions are there to orientate you, but the depth of your investigation and thinking will distinguish your task.

- The task is prepared and presented as a group. You must do the constructions during the presesntation, rather than present them as done.
- You must be able to share the screen and with the constructions in response to questions from the assessors.
- You have 20 minutes to do the presentation, then the assessors have 10 minutes to ask questions.
- You must interpret the task to demonstrate as many of the technological skills that you have learned on the course, as you possibly can.
- Through your accompanying talk, you must demonstrate how the use of the technology can help you to develop conceptual reasoning in geometry.
- You may use Geogebra or Desmos too, but preferably GSP.
- Your presentation is on the platform of your choice: MS TEAMS, Skype, Google meet, ZOOM are examples.

Assessment task 1

Concept:

- Classification of figures based on the relationships between their properties
- Defining

Technology:

- Construct versus draw (the drag test)
- Different construction routes: through transformations and classic Euclidean (based on construction and intersections of circles, parallel and perpendicular lines)

Reasoning:

- If... then...
- Is it always true?
- Hypothesis, dynamic investigation, proof

Task:

- Given two line segments of indefinite length. The segments are the diagonals of a rectangle. Construct the rectangle
- Proof that the figure is indeed a rectangle, in two different ways
- Vary the lengths of the diagonals. Which figures are possible? Which are impossible?
- Provide a definition of the possible quadrilaterals based on diagonal properties.

Assessment rubric			
Technology knowledge	10	Only basic constructions, but pass the drag test (1-3) Appropriate use of labelling and colour to promote focus (4-6) Creative use of software, e.g. use of sliders, measurement tools.	
Pedagogy: content and technology	10	Only demonstration (1 - 3) Use of dynamic change to stimulate investigation and hypothesizing (4 - 7) Proof reasoning integrated with investigation and/or extending the investigation to engage with other concepts (8 - 10)	
Group work	10	All group members get opportunity to contribute meaningfully	

SBIDZ Teacher Professional Development Course

Module 2: Teaching geometry with technology

Make sure you work on a high level of interpretation and analysis. The questions are there to orientate you, but the depth of your investigation and thinking will distinguish your task.

- The task is prepared and presented as a group. You must do the constructions during the presesntation, rather than present them as done.
- You must be able to share the screen and with the constructions in response to questions from the assessors.
- You have 20 minutes to do the presentation, then the assessors have 10 minutes to ask questions.
- You must interpret the task to demonstrate as many of the technological skills that you have learned on the course, as you possibly can.
- Through your accompanying talk, you must demonstrate how the use of the technology can help you to develop conceptual reasoning in geometry.
- You may use Geogebra or Desmos too, but preferably GSP.
- Your presentation is on the platform of your choice: MS TEAMS, Skype, Google meet, ZOOM are examples.

Assessment task 2

Concept:

- Classification of figures based on the relationships between their properties
- Defining

Technology:

- Construct versus draw (the drag test)
- Different construction routes: through transformations and classic Euclidean (based on construction and intersections of circles, parallel and perpendicular lines)

Reasoning:

- If... then...
- Is it always true?
- Hypothesis, dynamic investigation, proof

Task:

- Given your won construction of an extended tessellation of triangles, prove that the sum of the interior angles of a triangle is a straight angle.
- Prove in at least two ways that the sum of the exterior angles of a triangle is equal to the sum of the opposite interior angle
- Shift your attention to a quadrilateral in your tessellation. Formulate a hypothesis and prove it, about the relationship of the size of an exterior angle of a quadrilateral and the interior angles.

ssessment rubric			
Technology knowledge	10	Only basic constructions, but pass the drag test (1-3)	
Appropriate use of labelling and colour			
to promote focus			
(4-6)			
Creative use of software, e.g. use of			
sliders, measurement tools.			

SBIDZ Teacher Professional Development Course

Module 2: Teaching geometry with technology

Make sure you work on a high level of interpretation and analysis. The questions are there to orientate you, but the depth of your investigation and thinking will distinguish your task.

- The task is prepared and presented as a group. You must do the constructions during the presesntation, rather than present them as done.
- You must be able to share the screen and with the constructions in response to questions from the assessors.
- You have 20 minutes to do the presentation, then the assessors have 10 minutes to ask questions.
- You must interpret the task to demonstrate as many of the technological skills that you have learned on the course, as you possibly can.
- Through your accompanying talk, you must demonstrate how the use of the technology can help you to develop conceptual reasoning in geometry.
- You may use Geogebra or Desmos too, but preferably GSP.
- Your presentation is on the platform of your choice: MS TEAMS, Skype, Google meet, ZOOM are examples.

Assessment task 3

Concept:

- Classification of figures based on the relationships between their properties
- Defining

Technology:

- Construct versus draw (the drag test)
- Different construction routes: through transformations and classic Euclidean (based on construction and intersections of circles, parallel and perpendicular lines)

Reasoning:

- If... then...
- Is it always true?
- Hypothesis, dynamic investigation, proof

Task:

- Given your construction of a manipulable triangle between two parallel lines, investigate the size of the area of such a triangle, despite change in form.
- Prove in at least two ways that the area of trinagles on the same base and with the same heights are equal.
- Shift your attention to a quadrilateral in a similar construction. Make a hypothesis and prove it, about the areas of quadrilaterals on the same base and with same heights.

Assessment rubric			
Technology knowledge	10	Only basic constructions, but pass the drag test (1-3) Appropriate use of labelling and colour to promote focus (4-6) Creative use of software, e.g. use of sliders, measurement tools.	
Pedagogy: content and technology	10	Only demonstration (1 - 3) Use of dynamic change to stimulate investigation and hypothesizing (4 - 7) Proof reasoning integrated with investigation and/or extending the investigation to engage with other concepts (8 - 10)	
Group work	10	All group members get opportunity to contribute meaningfully	

SBIDZ Teacher Professional Development Course

Module 2: Teaching geometry with technology

Make sure you work on a high level of interpretation and analysis. The questions are there to orientate you, but the depth of your investigation and thinking will distinguish your task.

- The task is prepared and presented as a group. You must do the constructions during the presesntation, rather than present them as done.
- You must be able to share the screen and with the constructions in response to questions from the assessors.
- You have 20 minutes to do the presentation, then the assessors have 10 minutes to ask questions.
- You must interpret the task to demonstrate as many of the technological skills that you have learned on the course, as you possibly can.
- Through your accompanying talk, you must demonstrate how the use of the technology can help you to develop conceptual reasoning in geometry.
- You may use Geogebra or Desmos too, but preferably GSP.
- Your presentation is on the platform of your choice: MS TEAMS, Skype, Google meet, ZOOM are examples.

Assessment task 1

Concept:

- Classification of figures based on the relationships between their properties
- Defining

Technology:

- Construct versus draw (the drag test)
- Different construction routes: through transformations and classic Euclidean (based on construction and intersections of circles, parallel and perpendicular lines)

Reasoning:

- If... then...
- Is it always true?
- Hypothesis, dynamic investigation, proof

Task:

- Given your construction of a manipulable triangle, use transformation and congruence reasoning to investigate the relationship between the area of a rectangle and the area of a triangle
- Use your investigation to derive the formula for the area of a triangle
- Shift your attention to a trapezium. Derive the area formula for a trapezium in two different ways

Assessment rubric			
Technology knowledge	10	Only basic constructions, but pass the drag test (1-3) Appropriate use of labelling and colour to promote focus (4-6) Creative use of software, e.g. use of sliders, measurement tools.	
Pedagogy: content and technology	10	Only demonstration (1 - 3) Use of dynamic change to stimulate investigation and hypothesizing (4 - 7) Proof reasoning integrated with investigation and/or extending the investigation to engage with other concepts (8 - 10)	
Group work	10	All group members get opportunity to contribute meaningfully	

SBIDZ Teacher Professional Development Course

SBIDZ Teacher Professional Development Course

Module 2: Teaching geometry with technology

Make sure you work on a high level of interpretation and analysis. The questions are there to orientate you, but the depth of your investigation and thinking will distinguish your task.

- The task is prepared and presented as a group. You
 must do the constructions during the presentation, rather than present them as done.
- You must be able to share the screen and with the constructions in response to questions from the assessors.
- You have 20 minutes to do the presentation, then the assessors have 10 minutes to ask questions.
- You must interpret the task to demonstrate as many of the technological skills that you have learned on the course, as you possibly can.
- Through your accompanying talk, you must demonstrate how the use of the technology can help you to develop conceptual reasoning in geometry.
- You may use Geogebra or Desmos too, but preferably GSP.
- Your presentation is on the platform of your choice: MS TEAMS, Skype, Google meet, ZOOM are examples.

Assessment task 1

Concept:

- Classification of figures based on the relationships between their properties
- Defining

Technology:

- Construct versus draw (the drag test)
- Different construction routes: through transformations and classic Euclidean (based on construction and intersections of circles, parallel and perpendicular lines)

Reasoning:

- If... then...
- Is it always true?

Task:
Task:

- Given two line segments of indefinite length. The segments are the diagonals of a rectangle. Construct the rectangle
- Proof that the figure is indeed a rectangle, in two different ways
- Vary the lengths of the diagonals. Which figures are possible? Which are impossible?
- Provide a definition of the possible quadrilaterals based on diagonal properties.

Assessment rubric			
Technology knowledge	10	Only basic constructions, but pass the drag test (1-3) Appropriate use of labelling and colour to promote focus (4-6) Creative use of software, e.g. use of sliders, measurement tools.	
Pedagogy: content and technology	10	Only demonstration (1 - 3) Use of dynamic change to stimulate investigation and hypothesizing (4 - 7) Proof reasoning integrated with investigation and/or extending the investigation to engage with other concepts (8 - 10)	
Group work	10	All group members get opportunity to contribute meaningfully	

SBIDZ Teacher Professional Development Course

Module 2: Teaching geometry with technology

Make sure you work on a high level of interpretation and analysis. The questions are there to orientate you, but the depth of your investigation and thinking will distinguish your task.

- The task is prepared and presented as a group. You must do the constructions during the presesntation, rather than present them as done.
- You must be able to share the screen and with the constructions in response to questions from the assessors.
- You have 20 minutes to do the presentation, then the assessors have 10 minutes to ask questions.
- You must interpret the task to demonstrate as many of the technological skills that you have learned on the course, as you possibly can.
- Through your accompanying talk, you must demonstrate how the use of the technology can help you to develop conceptual reasoning in geometry.
- You may use Geogebra or Desmos too, but preferably GSP.
- Your presentation is on the platform of your choice: MS TEAMS, Skype, Google meet, ZOOM are examples.

Assessment task 1

Concept:

- Classification of figures based on the relationships between their properties
- Defining

Technology:

- Construct versus draw (the drag test)
- Different construction routes: through transformations and classic Euclidean (based on construction and intersections of circles, parallel and perpendicular lines)

Reasoning:

- If... then...
- Is it always true?
- Hypothesis, dynamic investigation, proof

Task:

- Given the standard Chinese tangram in the figure. Start by constructing the yellow triangle (note it is a special case, namely an isosceles triangle).
- Then construct the square on the hypotenuse, and segment the square as in the tangram.
- Use transformations to move the appropriate parts to their positions on the other sides.

- Investigate if the figure can be achieved with even fewer transformations.

Assessment rubric			
Technology knowledge	10	Only basic constructions, but pass the drag test (1-3) Appropriate use of labelling and colour to promote focus (4-6) Creative use of software, e.g. use of sliders, measurement tools.	
Pedagogy: content and technology	10	Only demonstration (1-3) Use of dynamic change to stimulate investigation and hypothesizing (4 - 7) Proof reasoning integrated with investigation and/or extending the investigation to engage with other concepts (8 - 10)	
Group work	10	All group members get opportunity to contribute meaningfully	

