## Module 2: Teaching geometry with technology

- The task is prepared and presented as a group. You must do the constructions during the presesntation, rather than present them as done.
- You must be able to share the screen and with the constructions in response to questions from the assessors.
- You have 20 minutes to do the presentation, then the assessors have 10 minutes to ask questions.
- You must interpret the task to demonstrate as many of the technological skills that you have learned on the course, as you possibly can.
- Through your accompanying talk, you must demonstrate how the use of the technology can help you to develop conceptual reasoning in geometry.
- You may use Geogebra or Desmos too, but preferably GSP.
- Your presentation is on the platform of your choice: MS TEAMS, Skype, Google meet, ZOOM are examples.



Concept:

- Classification of figures based on the relationships between their properties
- Defining

Technology:

- Construct versus draw (the drag test)
- Different construction routes: through transformations and classic Euclidean (based on construction and intersections of circles, parallel and perpendicular lines)

Reasoning:

- If... then...
- Is it always true?
- Hypothesis, dynamic investigation, proof

- Given two line segments of indefinite length. The segments are the diagonals of a rectangle. Construct the rectangle
- Proof that the figure is indeed a rectangle, in two different ways
- Vary the lengths of the diagonals. Which figures are possible? Which are impossible?
- Provide a definition of the possible quadrilaterals based on diagonal properties.

| Assessment rubric |    |                                         |  |
|-------------------|----|-----------------------------------------|--|
| Technology        | 10 | Only basic constructions, but pass the  |  |
| knowledge         |    | drag test (1 – 3)                       |  |
|                   |    | Appropriate use of labelling and colour |  |
|                   |    | to promote focus                        |  |
|                   |    | (4 – 6)                                 |  |
|                   |    | Creative use of software, e.g. use of   |  |
|                   |    | sliders, measurement tools.             |  |
| Pedagogy: content | 10 | Only demonstration (1 – 3)              |  |
| and technology    |    | Use of dynamic change to stimulate      |  |
|                   |    | investigation and hypothesizing (4 – 7) |  |
|                   |    | Proof reasoning integrated with         |  |
|                   |    | investigation and/or extending the      |  |
|                   |    | investigation to engage with other      |  |
|                   |    | concepts (8 – 10)                       |  |
| Group work        | 10 | All group members get opportunity to    |  |
|                   |    | contribute meaningfully                 |  |

### Module 2: Teaching geometry with technology

- The task is prepared and presented as a group. You must do the constructions during the presesntation, rather than present them as done.
- You must be able to share the screen and with the constructions in response to questions from the assessors.
- You have 20 minutes to do the presentation, then the assessors have 10 minutes to ask questions.
- You must interpret the task to demonstrate as many of the technological skills that you have learned on the course, as you possibly can.
- Through your accompanying talk, you must demonstrate how the use of the technology can help you to develop conceptual reasoning in geometry.
- You may use Geogebra or Desmos too, but preferably GSP.
- Your presentation is on the platform of your choice: MS TEAMS, Skype, Google meet, ZOOM are examples.



Concept:

- Classification of figures based on the relationships between their properties
- Defining

Technology:

- Construct versus draw (the drag test)
- Different construction routes: through transformations and classic Euclidean (based on construction and intersections of circles, parallel and perpendicular lines)

Reasoning:

- If... then...
- Is it always true?
- Hypothesis, dynamic investigation, proof

- Given your won construction of an extended tessellation of triangles, prove that the sum of the interior angles of a triangle is a straight angle.
- Prove in at least two ways that the sum of the exterior angles of a triangle is equal to the sum of the opposite interior angle
- Shift your attention to a quadrilateral in your tessellation. Formulate a hypothesis and prove it, about the relationship of the size of an exterior angle of a quadrilateral and the interior angles.

| ssessment rubric  |    |                                         |  |
|-------------------|----|-----------------------------------------|--|
| Technology        | 10 | Only basic constructions, but pass the  |  |
| knowledge         |    | drag test (1 – 3)                       |  |
|                   |    | Appropriate use of labelling and colour |  |
|                   |    | to promote focus                        |  |
|                   |    | (4 – 6)                                 |  |
|                   |    | Creative use of software, e.g. use of   |  |
|                   |    | sliders, measurement tools.             |  |
| Pedagogy: content | 10 | Only demonstration $(1 - 3)$            |  |
| and technology    |    | Use of dynamic change to stimulate      |  |
|                   |    | investigation and hypothesizing (4 – 7) |  |
|                   |    | Proof reasoning integrated with         |  |
|                   |    | investigation and/or extending the      |  |
|                   |    | investigation to engage with other      |  |
|                   |    | concepts (8 – 10)                       |  |
| Group work        | 10 | All group members get opportunity to    |  |
|                   |    | contribute meaningfully                 |  |

### Module 2: Teaching geometry with technology

- The task is prepared and presented as a group. You must do the constructions during the presesntation, rather than present them as done.
- You must be able to share the screen and with the constructions in response to questions from the assessors.
- You have 20 minutes to do the presentation, then the assessors have 10 minutes to ask questions.
- You must interpret the task to demonstrate as many of the technological skills that you have learned on the course, as you possibly can.
- Through your accompanying talk, you must demonstrate how the use of the technology can help you to develop conceptual reasoning in geometry.
- You may use Geogebra or Desmos too, but preferably GSP.
- Your presentation is on the platform of your choice: MS TEAMS, Skype, Google meet, ZOOM are examples.



Concept:

- Classification of figures based on the relationships between their properties
- Defining

Technology:

- Construct versus draw (the drag test)
- Different construction routes: through transformations and classic Euclidean (based on construction and intersections of circles, parallel and perpendicular lines)

Reasoning:

- If... then...
- Is it always true?
- Hypothesis, dynamic investigation, proof

- Given your construction of a manipulable triangle between two parallel lines, investigate the size of the area of such a triangle, despite change in form.
- Prove in at least two ways that the area of trinagles on the same base and with the same heights are equal.
- Shift your attention to a quadrilateral in a similar construction. Make a hypothesis and prove it, about the areas of quadrilaterals on the same base and with same heights.

| Assessment rubric |    |                                         |  |
|-------------------|----|-----------------------------------------|--|
| Technology        | 10 | Only basic constructions, but pass the  |  |
| knowledge         |    | drag test (1 – 3)                       |  |
|                   |    | Appropriate use of labelling and colour |  |
|                   |    | to promote focus                        |  |
|                   |    | (4 – 6)                                 |  |
|                   |    | Creative use of software, e.g. use of   |  |
|                   |    | sliders, measurement tools.             |  |
| Pedagogy: content | 10 | Only demonstration (1 – 3)              |  |
| and technology    |    | Use of dynamic change to stimulate      |  |
|                   |    | investigation and hypothesizing (4 – 7) |  |
|                   |    | Proof reasoning integrated with         |  |
|                   |    | investigation and/or extending the      |  |
|                   |    | investigation to engage with other      |  |
|                   |    | concepts (8 – 10)                       |  |
| Group work        | 10 | All group members get opportunity to    |  |
|                   |    | contribute meaningfully                 |  |

### Module 2: Teaching geometry with technology

- The task is prepared and presented as a group. You must do the constructions during the presesntation, rather than present them as done.
- You must be able to share the screen and with the constructions in response to questions from the assessors.
- You have 20 minutes to do the presentation, then the assessors have 10 minutes to ask questions.
- You must interpret the task to demonstrate as many of the technological skills that you have learned on the course, as you possibly can.
- Through your accompanying talk, you must demonstrate how the use of the technology can help you to develop conceptual reasoning in geometry.
- You may use Geogebra or Desmos too, but preferably GSP.
- Your presentation is on the platform of your choice: MS TEAMS, Skype, Google meet, ZOOM are examples.



Assesseringstaak 4

#### Assessment task 1

Concept:

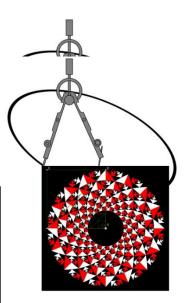
- Classification of figures based on the relationships between their properties
- Defining

Technology:

- Construct versus draw (the drag test)
- Different construction routes: through transformations and classic Euclidean (based on construction and intersections of circles, parallel and perpendicular lines)

Reasoning:

- If... then...
- Is it always true?
- Hypothesis, dynamic investigation, proof


- Given your construction of a manipulable triangle, use transformation and congruence reasoning to investigate the relationship between the area of a rectangle and the area of a triangle
- Use your investigation to derive the formula for the area of a triangle
- Shift your attention to a trapezium. Derive the area formula for a trapezium in two different ways

| Assessment rubric |    |                                         |  |
|-------------------|----|-----------------------------------------|--|
| Technology        | 10 | Only basic constructions, but pass the  |  |
| knowledge         |    | drag test (1 – 3)                       |  |
|                   |    | Appropriate use of labelling and colour |  |
|                   |    | to promote focus                        |  |
|                   |    | (4 – 6)                                 |  |
|                   |    | Creative use of software, e.g. use of   |  |
|                   |    | sliders, measurement tools.             |  |
| Pedagogy: content | 10 | Only demonstration (1 – 3)              |  |
| and technology    |    | Use of dynamic change to stimulate      |  |
|                   |    | investigation and hypothesizing (4 – 7) |  |
|                   |    | Proof reasoning integrated with         |  |
|                   |    | investigation and/or extending the      |  |
|                   |    | investigation to engage with other      |  |
|                   |    | concepts (8 – 10)                       |  |
| Group work        | 10 | All group members get opportunity to    |  |
|                   |    | contribute meaningfully                 |  |

### **SBIDZ Teacher Professional Development Course**

### Module 2: Teaching geometry with technology

- The task is prepared and presented as a group. You must do the constructions during the presentation, rather than present them as done.
- You must be able to share the screen and with the constructions in response to questions from the assessors.
- You have 20 minutes to do the presentation, then the assessors have 10 minutes to ask questions.
- You must interpret the task to demonstrate as many of the technological skills that you have learned on the course, as you possibly can.
- Through your accompanying talk, you must demonstrate how the use of the technology can help you to develop conceptual reasoning in geometry.
- You may use Geogebra or Desmos too, but preferably GSP.
- Your presentation is on the platform of your choice: MS TEAMS, Skype, Google meet, ZOOM are examples.



Concept:

- Classification of figures based on the relationships between their properties
- Defining

Technology:

- Construct versus draw (the drag test)
- Different construction routes: through transformations and classic Euclidean (based on construction and intersections of circles, parallel and perpendicular lines)

Reasoning:

- If... then...
- Is it always true?

Task:

- Given two line segments of indefinite length. The segments are the diagonals of a rectangle. Construct the rectangle
- Proof that the figure is indeed a rectangle, in two different ways
- Vary the lengths of the diagonals. Which figures are possible? Which are impossible?
- Provide a definition of the possible quadrilaterals based on diagonal properties.

| Assessment rubric |    |                                         |  |
|-------------------|----|-----------------------------------------|--|
| Technology        | 10 | Only basic constructions, but pass the  |  |
| knowledge         |    | drag test (1 – 3)                       |  |
|                   |    | Appropriate use of labelling and colour |  |
|                   |    | to promote focus                        |  |
|                   |    | (4 – 6)                                 |  |
|                   |    | Creative use of software, e.g. use of   |  |
|                   |    | sliders, measurement tools.             |  |
| Pedagogy: content | 10 | Only demonstration $(1 - 3)$            |  |
| and technology    |    | Use of dynamic change to stimulate      |  |
|                   |    | investigation and hypothesizing (4 – 7) |  |
|                   |    | Proof reasoning integrated with         |  |
|                   |    | investigation and/or extending the      |  |
|                   |    | investigation to engage with other      |  |
|                   |    | concepts (8 – 10)                       |  |
| Group work        | 10 | All group members get opportunity to    |  |
|                   |    | contribute meaningfully                 |  |

### Module 2: Teaching geometry with technology

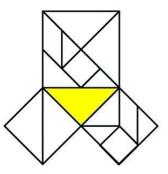
- The task is prepared and presented as a group. You must do the constructions during the presesntation, rather than present them as done.
- You must be able to share the screen and with the constructions in response to questions from the assessors.
- You have 20 minutes to do the presentation, then the assessors have 10 minutes to ask questions.
- You must interpret the task to demonstrate as many of the technological skills that you have learned on the course, as you possibly can.
- Through your accompanying talk, you must demonstrate how the use of the technology can help you to develop conceptual reasoning in geometry.
- You may use Geogebra or Desmos too, but preferably GSP.
- Your presentation is on the platform of your choice: MS TEAMS, Skype, Google meet, ZOOM are examples.



Concept:

- Classification of figures based on the relationships between their properties
- Defining

Technology:


- Construct versus draw (the drag test)
- Different construction routes: through transformations and classic Euclidean (based on construction and intersections of circles, parallel and perpendicular lines)

Reasoning:

- If... then...
- Is it always true?
- Hypothesis, dynamic investigation, proof

Task:

- Given the standard Chinese tangram in the figure. Start by constructing the yellow triangle (note it is a special case, namely an isosceles triangle).
- Then construct the square on the hypotenuse, and segment the square as in the tangram.
- Use transformations to move the appropriate parts to their positions on the other sides.



• Investigate if the figure can be achieved with even fewer transformations.

| Assessment rubric                   |    |                                                                                                                                                                                                                                                    |  |
|-------------------------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Technology<br>knowledge             | 10 | Only basic constructions, but pass the drag<br>test $(1 - 3)$<br>Appropriate use of labelling and colour to<br>promote focus<br>(4 - 6)<br>Creative use of software, e.g. use of sliders,<br>measurement tools.                                    |  |
| Pedagogy: content<br>and technology | 10 | Only demonstration $(1 - 3)$<br>Use of dynamic change to stimulate<br>investigation and hypothesizing $(4 - 7)$<br>Proof reasoning integrated with investigation<br>and/or extending the investigation to engage<br>with other concepts $(8 - 10)$ |  |
| Group work                          | 10 | All group members get opportunity to<br>contribute meaningfully                                                                                                                                                                                    |  |